

Great Lakes Fruit, Vegetable & Farm Market EXPO Michigan Greenhouse Growers EXPO

51 Peach and Plum

Where: Grand Gallery Overlook Room G & H

Mi Recertification Credits: 2 (1C, COMM CORE, PRIV CORE)

CCA Credits: CM (1.5) PM (1.5)

Moderator: David Jones, Michigan State University Extension

9:00 AM Pre- and Post-Harvest Quality of Peach and Plum

• Ioannis Minas, Colorado State University

9:30 AM Frost Protection Options in Tree Fruit Crops

• Hemant Gohil, Rutgers Cooperative Extension - Gloucester County

10:00 AM Peach Cold Hardiness

Ioannis Minas, Colorado State University

10:30 AM New Insights on Oriental Fruit Moth Monitoring in Michigan Peach Orchards

David Jones, Michigan State University Extension

11:00 AM Session Ends

USDA-Plant Hardiness Zones Map

Mitigating cold damage in Colorado tree-fruit

Objectives

- Develop reliable tools (other than oxidative browning) to determine lethal temperatures of peach floral buds of different cultivars under CO climatic conditions
- Evaluate horticultural practices and genetic material to mitigate or avoid cold damage
- · Develop cold hardiness prediction models based on weather patterns
- Provide growers accurate data during dormant season on cold hardiness status to make informed frost control decisions (i.e., decisionsupport)
- Understand environmental and molecular bases for peach cold hardiness and damage

- Using a single-edged razor blade a longitudinal sectioning is made to confirm the injury of the ovary
- Buds with vibrant green tissue are judged as viable whereas buds with brown tissue are judged to be dead
- Brown coloration: oxidation of the phenolic compounds being released in the damaged tissues
- Can be performed at any phenological stage
- Labor intensive and not friendly for large data volumes
- · Development of prediction models?

Experimental approach

- Fifteen 8-years old 'Sierra Rich', 'Cresthaven' and 'Red Haven'
 ('Suncrest was added in 2017-18) peach trees (Lovell rootstock) located
 at the CSU's experimental orchard in WCRC-OM, Grand Junction, CO
- Dormant buds were collected weekly or 2 times per week from shoots of moderate vigor and placed in a container that had been previously cooled to 4°C
- Buds were separated and randomly assigned to 15 sets of 10 buds per cultivar (150 buds)
- Five sets (50 buds) were kept as a control (not frozen) for visual evaluation of oxidative browning to check variability and dead material that was present in the orchard
- The remaining 10 sets per cultivar (100 buds) were used for DTA

DTA on 'Red Haven' peach dormant floral buds

Incubation at -2°C overnight (12h) can reversed disappearance of LTEs during deacclimation

Peach floral bud phenology stages and critical temperatures (°F) Swollen Bud (First Swell) Calyx Green 1/4" green (Calyx Red) Pink (First Pink)

Frost Protection systems

Sprinkler irrigation

Spring Frost

Orchard Mesa, CO Night of April 4th to 5th, 2017

Take home messages!

- · Peach enters in maximum hardiness following a major frost event
- Peach cultivars tested for 2 seasons do not exhibited any significant midwinter cold damage (except of 'Sierra Rich' in 2017-18)
- Late January and February deacclimation process prior to visual bud swell can cause severe bud loss (frost protection)
- Different cultivars show different deacclimation speeds (different heat requirements following chilling satisfaction)
- Intermediate cold/heat events at different times during the dormant season can affect differently acclimation/deacclimation process
- Rootstocks affect mainly acclimation and deacclimation timing but maximum hardiness too

Changes at the biochemical level associated with dormancy transitions

Dormancy phases as described by Lang, 1987. HortScience 22, 817–820

Metabolomic analysis of floral buds coming from cultivars with distinct cold hardiness responses

CSU_Pomology

variation in the metabolome

Conclusions

- DTA predicts accurately mid- and late-winder cold hardiness and damage of peach floral buds
- DTA loses the capacity to determine ice nucleation events as bud development advances in spring
- Overnight incubation at -2°C reversed LTE disappearance in February for up to 1 month
- Sensing and understanding the mechanisms govern the transition from endo-dormancy to eco-dormancy is very important for maximum
- DTA is an objective measure that can accurately identify the transition from eco-dormancy to growth and development in peach floral buds
- Provides reliable data for cold hardiness prediction models development (3-5 years data needed)
- Valuable tool for comparative studies on cultural management practices, rootstocks and cultivars evaluation

