

Great Lakes Fruit, Vegetable & Farm Market EXPO Michigan Greenhouse Growers EXPO

December 4-6, 2018

62 Tree Fruit

Where: Ballroom D

MI re-certification credits: 2 (1C, COMM CORE, PRIV CORE)

OH re-certification credits: 1 (presentations as marked)

CCA Credits: CM (0.5) PM (1) SW (0.5)

Moderator: Scott Hassle

9:00 AM Ethanol and a Fungal Feast: Black Stem Borer Colonization of Fruit Trees

Sara Villani, North Carolina State University

9:30 AM Biorational Management of Pear Psylla with Modern Delivery Systems (OH 2B, 1)

John Wise, Michigan State University

10:00 AM Precision Orchard Irrigation

Hemant Gohil, Rutgers Cooperative Extension - Gloucester County

10:30 AM What We Know About Spotted Lantern Fly

Julianna Wilson, Michigan State University

10:45 AM How the Michigan Tree Fruit Commission is Helping the Tree Fruit Industry

Phil Schwallier, Michigan State University

11:00 AM Session Ends

Characteristics of RAD (Rapid Apple Decline)

- Young (≤6 years) dwarfing trees in high density orchards
- Several dwarfing rootstocks involved: Malling (Mseries), Budagovsky (B-series), Geneva (G-series)
- Several cultivars involved
- Graft union necrosis: Proceeds up the tree
- Root system usually appears healthy
- Random dispersal of affected trees throughout a block
- Leaves: Chlorotic (pale green/yellow) red

Tree Stress: Winter Injury Last part of tree to harden off is lower part of tree; lower scaffolds to soil line · Avoid poorly drained and low-lying areas · Irrigation/fertilizer management: too much water or fertilizer > trees growing late into fall Take care with herbicide use > mild damage may decrease cold hardiness • Late summer pruning > decrease cold hardiness

Rootstock selection: MM.106 slow hardening: Geneva

series G.935 good cold tolerance

2017 Western NC Ambrosia Beetle/RAD Survey: Phytopathogen/Fungal Associations

- 29 high density "orchards" (1 research, 28 commercial), 3 NC Counties: 163 trees total
- Rootstocks: M-9 (NIC 29, 337), -26; G-11, -30, -41; B-9, -118; EMLA-26
- Cultivar: Cameo (2), Gala (5), Fuji (3), Red Delicious (1), Honeycrisp (7), JerseyMac (1), Granny Smith (1), Newton Pippen (1), Crimson Crisp (1), Mixed/unknown (6)
- 23 of 28: No irrigation used
- Maximum 10 trees evaluated per orchard

2018 Insecticide Trial

- 1-year old potted trees: 'Granny Smith' on B.9 rootstock
- Pots placed in plastic bag and watered weekly with 2.5% ETOH
- 7-wk exposure period near wooded area of an orchard with high RAD incidence in 2017.
- Treatments
- Soil applied systemic insecticides applied one month before field exposure period
- Foliar applications made weekly beginning at exposure
- PermaNet: deltamethrin-impregnated netting wrapped around trunk.

Ambrosia beetle entries in apple trees during 7-wk exposure period. Fruitland, NC. 2018.

Treatment	Rate (/A)	Entries/tree	Entries with adult &/or larva1
ETOH Control	-	11.8a	8.6b
Venom (soil)	6.0 oz	11.8a	9.4b
Admire (Soil)	10.5 oz	5.2a	3.4ab
Admire (Foliar)	7.0 oz	7.4a	6.6b
Karate (Foliar)	2.5 oz	6.4a	4.0ab
Lorsban (Foliar)	3.0 qt	6.6a	3.2ab
Cobalt (Foliar)	1.3 qt	3.2a	0.2a
PermaNet	-	2.2a	0.6a

Final Thoughts

- Management of ambrosia beetle/BSB associated apple decline will require a combination of stress mitigation, well-timed insecticide applications, and possibly fungicide applications
- In NC, extreme drought conditions in 2016 alone or combined with winter injury likely contributed to increased tree stress followed by ambrosia beetle colonization in 2017
- The role of fungal symbionts and auxiliary fungi of ambrosia beetles/BSB in tree decline is still unknown however, several associated fungi are recognized as weak/opportunistic pathogens in tree fruit

Estimated Impact of Ambrosia beetle/BSB associated Tree Loss on Economics of High **Density Apple Orchards**

	Cumulative Income (\$/A)			
Break even year	10 years	15 years		
6.8	38,080	110,008		
7.2	30,711	94,254		
7.5	23,351	78501		
8.7	8,632	46,994		
8.6	9,438	47,800		
	Break even year 6.8 7.2 7.5	Break even year 10 years 6.8 38,080 7.2 30,711 7.5 23,351 8.7 8,632		

<u>Assumptions:</u> \$15,000/acre establishment cost, 'Gala' cultiver, \$13.43/bushel return, all healthy trees reach yield potential.

Acknowledgments

Nettie Calvin Amelia Heintz-Botz Chris Ranger Seth Ellis Rachel Kreis Kareem Phillips Cole Ford Steve Schoof David Alvera Julian Golec

Matt Bertone NC Ag Res Serv Art Agnello NC Ag Foundation

4